」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 掌握影像分割:傳統技術如何在數位時代仍然大放異彩

掌握影像分割:傳統技術如何在數位時代仍然大放異彩

發佈於2024-11-08
瀏覽:553

介绍

图像分割是计算机视觉中最基本的过程之一,它允许系统分解和分析图像内的各个区域。无论您是在处理对象识别、医学成像还是自动驾驶,分割都可以将图像分解为有意义的部分。

尽管深度学习模型在这项任务中越来越受欢迎,但数字图像处理中的传统技术仍然强大且实用。本文回顾的方法包括阈值处理、边缘检测、基于区域和通过实施公认的细胞图像分析数据集(MIVIA HEp-2 图像数据集)进行聚类。

MIVIA HEp-2 图像数据集

MIVIA HEp-2 图像数据集是一组细胞图片,用于分析 HEp-2 细胞中的抗核抗体 (ANA) 模式。它由通过荧光显微镜拍摄的二维图片组成。这使得它非常适合分割任务,最重要的是那些与医学图像分析有关的任务,其中细胞区域检测是最重要的。

现在,让我们继续讨论用于处理这些图像的分割技术,根据 F1 分数比较它们的性能。


1. 阈值分割

阈值处理是根据像素强度将灰度图像转换为二值图像的过程。在 MIVIA HEp-2 数据集中,此过程对于从背景中提取细胞非常有用。它在很大程度上是简单有效的,特别是使用大津方法,因为它会自动计算最佳阈值。

Otsu 的方法 是一种自动阈值方法,它试图找到最佳阈值以产生最小的类内方差,从而分离两个类:前景(细胞)和背景。该方法检查图像直方图并计算完美阈值,其中每个类别中的像素强度方差的总和最小化。

# Thresholding Segmentation
def thresholding(img):
    # Convert image to grayscale
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    # Apply Otsu's thresholding
    _, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY   cv.THRESH_OTSU)

    return thresh

Mastering Image Segmentation: How Traditional Techniques Still Shine in the Digital Age


2. 边缘检测分割

边缘检测涉及识别对象或区域的边界,例如 MIVIA HEp-2 数据集中的细胞边缘。在用于检测突然强度变化的许多可用方法中,Canny 边缘检测器 是最好的,因此也是最适合用于检测细胞边界的方法。

Canny 边缘检测器 是一种多阶段算法,可以通过检测强度梯度较强的区域来检测边缘。该过程包括使用高斯滤波器进行平滑、计算强度梯度、应用非极大值抑制来消除寄生响应,以及最终的双阈值操作以仅保留显着边缘。

# Edge Detection Segmentation
def edge_detection(img):
    # Convert image to grayscale
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    # Apply Gaussian blur
    gray = cv.GaussianBlur(gray, (3, 3), 0)

    # Calculate lower and upper thresholds for Canny edge detection
    sigma = 0.33
    v = np.median(gray)
    lower = int(max(0, (1.0 - sigma) * v))
    upper = int(min(255, (1.0   sigma) * v))

    # Apply Canny edge detection
    edges = cv.Canny(gray, lower, upper)

    # Dilate the edges to fill gaps
    kernel = np.ones((5, 5), np.uint8)
    dilated_edges = cv.dilate(edges, kernel, iterations=2)

    # Clean the edges using morphological opening
    cleaned_edges = cv.morphologyEx(dilated_edges, cv.MORPH_OPEN, kernel, iterations=1)

    # Find connected components and filter out small components
    num_labels, labels, stats, _ = cv.connectedComponentsWithStats(
        cleaned_edges, connectivity=8
    )
    min_size = 500
    filtered_mask = np.zeros_like(cleaned_edges)
    for i in range(1, num_labels):
        if stats[i, cv.CC_STAT_AREA] >= min_size:
            filtered_mask[labels == i] = 255

    # Find contours of the filtered mask
    contours, _ = cv.findContours(
        filtered_mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE
    )

    # Create a filled mask using the contours
    filled_mask = np.zeros_like(gray)
    cv.drawContours(filled_mask, contours, -1, (255), thickness=cv.FILLED)

    # Perform morphological closing to fill holes
    final_filled_image = cv.morphologyEx(
        filled_mask, cv.MORPH_CLOSE, kernel, iterations=2
    )

    # Dilate the final filled image to smooth the edges
    final_filled_image = cv.dilate(final_filled_image, kernel, iterations=1)

    return final_filled_image

Mastering Image Segmentation: How Traditional Techniques Still Shine in the Digital Age


3. 基于区域的分割

基于区域的分割根据某些标准(例如强度或颜色)将相似的像素分组到区域中。 分水岭分割技术可用于帮助分割 HEp-2 细胞图像,以便能够检测代表细胞的那些区域;它将像素强度视为地形表面并勾勒出区分区域的轮廓。

分水岭分割将像素的强度视为地形表面。该算法识别“盆地”,在其中识别局部最小值,然后逐渐淹没这些盆地以扩大不同的区域。当人们想要分离触摸物体时(例如显微图像中的细胞),这种技术非常有用,但它可能对噪声敏感。该过程可以通过标记来指导,并且通常可以减少过度分割。

# Region-Based Segmentation
def region_based(img):
    # Convert image to grayscale
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    # Apply Otsu's thresholding
    _, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV   cv.THRESH_OTSU)

    # Apply morphological opening to remove noise
    kernel = np.ones((3, 3), np.uint8)
    opening = cv.morphologyEx(thresh, cv.MORPH_OPEN, kernel, iterations=2)

    # Dilate the opening to get the background
    sure_bg = cv.dilate(opening, kernel, iterations=3)

    # Calculate the distance transform
    dist_transform = cv.distanceTransform(opening, cv.DIST_L2, 5)

    # Threshold the distance transform to get the foreground
    _, sure_fg = cv.threshold(dist_transform, 0.2 * dist_transform.max(), 255, 0)
    sure_fg = np.uint8(sure_fg)

    # Find the unknown region
    unknown = cv.subtract(sure_bg, sure_fg)

    # Label the markers for watershed algorithm
    _, markers = cv.connectedComponents(sure_fg)
    markers = markers   1
    markers[unknown == 255] = 0

    # Apply watershed algorithm
    markers = cv.watershed(img, markers)

    # Create a mask for the segmented region
    mask = np.zeros_like(gray, dtype=np.uint8)
    mask[markers == 1] = 255

    return mask

Mastering Image Segmentation: How Traditional Techniques Still Shine in the Digital Age


4. 基于聚类的分割

诸如K-Means之类的聚类技术倾向于将像素分组到相似的聚类中,当想要在多色或复杂环境中分割细胞时,这种方法效果很好,如 HEp-2 细胞图像中所示。从根本上讲,这可以代表不同的类别,例如细胞区域与背景。

K-means 是一种基于颜色或强度的像素相似性对图像进行聚类的无监督学习算法。该算法随机选择K个质心,将每个像素分配给最近的质心,并迭代更新质心直至收敛。它对于分割具有多个彼此非常不同的感兴趣区域的图像特别有效。

# Clustering Segmentation
def clustering(img):
    # Convert image to grayscale
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    # Reshape the image
    Z = gray.reshape((-1, 3))
    Z = np.float32(Z)

    # Define the criteria for k-means clustering
    criteria = (cv.TERM_CRITERIA_EPS   cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)

    # Set the number of clusters
    K = 2

    # Perform k-means clustering
    _, label, center = cv.kmeans(Z, K, None, criteria, 10, cv.KMEANS_RANDOM_CENTERS)

    # Convert the center values to uint8
    center = np.uint8(center)

    # Reshape the result
    res = center[label.flatten()]
    res = res.reshape((gray.shape))

    # Apply thresholding to the result
    _, res = cv.threshold(res, 0, 255, cv.THRESH_BINARY   cv.THRESH_OTSU)

    return res

Mastering Image Segmentation: How Traditional Techniques Still Shine in the Digital Age


使用 F1 分数评估技术

F1 分数 是一种将精度和召回率结合在一起的度量,用于将预测分割图像与地面真实图像进行比较。它是精度和召回率的调和平均值,在数据高度不平衡的情况下非常有用,例如在医学成像数据集中。

我们通过展平地面实况和分割图像并计算加权 F1 分数来计算每种分割方法的 F1 分数。

def calculate_f1_score(ground_image, segmented_image):
    ground_image = ground_image.flatten()
    segmented_image = segmented_image.flatten()
    return f1_score(ground_image, segmented_image, average="weighted")

然后我们使用简单的条形图可视化不同方法的 F1 分数:

Mastering Image Segmentation: How Traditional Techniques Still Shine in the Digital Age


结论

尽管最近出现了许多图像分割方法,但阈值处理、边缘检测、基于区域的方法和聚类等传统分割技术在应用于 MIVIA HEp-2 图像数据集等数据集时非常有用。

每种方法都有其优点:

  • 阈值适用于简单的二进制分割。
  • 边缘检测是边界检测的理想技术。
  • 基于区域的分割对于将连接的组件与其邻居分离非常有用。
  • 聚类方法非常适合多区域分割任务。

通过使用 F1 分数评估这些方法,我们了解了每个模型的权衡。这些方法可能不像最新的深度学习模型中开发的那么复杂,但它们仍然快速、可解释且可在广泛的应用中使用。


感谢您的阅读!我希望对传统图像分割技术的探索能够启发您的下一个项目。欢迎在下面的评论中分享您的想法和经验!

版本聲明 本文轉載於:https://dev.to/ahmedmbutt/mastering-image-segmentation-how-traditional-techniques-still-shine-in-the-digital-age-36fa?1如有侵犯,請洽study_golang@163 .com刪除
最新教學 更多>
  • Go語言如何動態發現導出包類型?
    Go語言如何動態發現導出包類型?
    與反射軟件包中的有限類型的發現能力相反,本文探索了替代方法,探索了在Runruntime。 go import( “ FMT” “去/進口商” ) func main(){ pkg,err:= incorter.default()。導入(“ time”) 如果er...
    程式設計 發佈於2025-05-17
  • 在細胞編輯後,如何維護自定義的JTable細胞渲染?
    在細胞編輯後,如何維護自定義的JTable細胞渲染?
    在JTable中維護jtable單元格渲染後,在JTable中,在JTable中實現自定義單元格渲染和編輯功能可以增強用戶體驗。但是,至關重要的是要確保即使在編輯操作後也保留所需的格式。 在設置用於格式化“價格”列的“價格”列,用戶遇到的數字格式丟失的“價格”列的“價格”之後,問題在設置自定義單元...
    程式設計 發佈於2025-05-17
  • 為什麼不````''{margin:0; }`始終刪除CSS中的最高邊距?
    為什麼不````''{margin:0; }`始終刪除CSS中的最高邊距?
    在CSS 問題:不正確的代碼: 全球範圍將所有餘量重置為零,如提供的代碼所建議的,可能會導致意外的副作用。解決特定的保證金問題是更建議的。 例如,在提供的示例中,將以下代碼添加到CSS中,將解決餘量問題: body H1 { 保證金頂:-40px; } 此方法更精確,避免了由全局保證金重置...
    程式設計 發佈於2025-05-17
  • 如何使用node-mysql在單個查詢中執行多個SQL語句?
    如何使用node-mysql在單個查詢中執行多個SQL語句?
    在node-mysql node-mysql文檔最初出於安全原因最初禁用多個語句支持,因為它可能導致SQL注入攻擊。要啟用此功能,您需要在創建連接時將倍增設置設置為true: var connection = mysql.createconnection({{multipleStatement:...
    程式設計 發佈於2025-05-17
  • Java為何無法創建泛型數組?
    Java為何無法創建泛型數組?
    通用陣列創建錯誤 arrayList [2]; JAVA報告了“通用數組創建”錯誤。為什麼不允許這樣做? 答案:Create an Auxiliary Class:public static ArrayList<myObject>[] a = new ArrayList<my...
    程式設計 發佈於2025-05-17
  • 如何將來自三個MySQL表的數據組合到新表中?
    如何將來自三個MySQL表的數據組合到新表中?
    mysql:從三個表和列的新表創建新表 答案:為了實現這一目標,您可以利用一個3-way Join。 選擇p。 *,d.content作為年齡 來自人為p的人 加入d.person_id = p.id上的d的詳細信息 加入T.Id = d.detail_id的分類法 其中t.taxonomy ...
    程式設計 發佈於2025-05-17
  • 將圖片浮動到底部右側並環繞文字的技巧
    將圖片浮動到底部右側並環繞文字的技巧
    在Web設計中圍繞在Web設計中,有時可以將圖像浮動到頁面右下角,從而使文本圍繞它纏繞。這可以在有效地展示圖像的同時創建一個吸引人的視覺效果。 css位置在右下角,使用css float and clear properties: img { 浮點:對; ...
    程式設計 發佈於2025-05-17
  • 在PHP中如何高效檢測空數組?
    在PHP中如何高效檢測空數組?
    在PHP 中檢查一個空數組可以通過各種方法在PHP中確定一個空數組。如果需要驗證任何數組元素的存在,則PHP的鬆散鍵入允許對數組本身進行直接評估:一種更嚴格的方法涉及使用count()函數: if(count(count($ playerList)=== 0){ //列表為空。 } 對...
    程式設計 發佈於2025-05-17
  • 在Ubuntu/linux上安裝mysql-python時,如何修復\“ mysql_config \”錯誤?
    在Ubuntu/linux上安裝mysql-python時,如何修復\“ mysql_config \”錯誤?
    mysql-python安裝錯誤:“ mysql_config找不到”“ 由於缺少MySQL開發庫而出現此錯誤。解決此問題,建議在Ubuntu上使用該分發的存儲庫。使用以下命令安裝Python-MysqldB: sudo apt-get安裝python-mysqldb sudo pip in...
    程式設計 發佈於2025-05-17
  • `console.log`顯示修改後對象值異常的原因
    `console.log`顯示修改後對象值異常的原因
    foo = [{id:1},{id:2},{id:3},{id:4},{id:id:5},],]; console.log('foo1',foo,foo.length); foo.splice(2,1); console.log('foo2', foo, foo....
    程式設計 發佈於2025-05-17
  • 如何使用Depimal.parse()中的指數表示法中的數字?
    如何使用Depimal.parse()中的指數表示法中的數字?
    在嘗試使用Decimal.parse(“ 1.2345e-02”中的指數符號表示法表示的字符串時,您可能會遇到錯誤。這是因為默認解析方法無法識別指數符號。 成功解析這樣的字符串,您需要明確指定它代表浮點數。您可以使用numbersTyles.Float樣式進行此操作,如下所示:[&& && && ...
    程式設計 發佈於2025-05-17
  • 如何使用FormData()處理多個文件上傳?
    如何使用FormData()處理多個文件上傳?
    )處理多個文件輸入時,通常需要處理多個文件上傳時,通常是必要的。 The fd.append("fileToUpload[]", files[x]); method can be used for this purpose, allowing you to send multi...
    程式設計 發佈於2025-05-17
  • Spark DataFrame添加常量列的妙招
    Spark DataFrame添加常量列的妙招
    在Spark Dataframe ,將常數列添加到Spark DataFrame,該列具有適用於所有行的任意值的Spark DataFrame,可以通過多種方式實現。使用文字值(SPARK 1.3)在嘗試提供直接值時,用於此問題時,旨在為此目的的使用column方法可能會導致錯誤。 df.with...
    程式設計 發佈於2025-05-17
  • PHP與C++函數重載處理的區別
    PHP與C++函數重載處理的區別
    作為經驗豐富的C開發人員脫離謎題,您可能會遇到功能超載的概念。這個概念雖然在C中普遍,但在PHP中構成了獨特的挑戰。讓我們深入研究PHP功能過載的複雜性,並探索其提供的可能性。 在PHP中理解php的方法在PHP中,函數超載的概念(如C等語言)不存在。函數簽名僅由其名稱定義,而與他們的參數列表無關...
    程式設計 發佈於2025-05-17

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3